Publications in year 2013

Vol. 27, Issue 4



Estimation of soil water evaporative loss after tillage operation using the stable isotope technique

International Agrophysics
Year : 2013
DOI : 10.2478/v10247-012-0093-8
Volumen : 27
Issue : 3
Pages : 257 - 264
  PDF 896.66 KB
Authors: M. Busari1, F. Salako1, C. Tuniz2, G. Zuppi3, B. Stenni4, M. Adetunji1, T. Arowolo5

1Department of Soil Science and Land Management, University of Agriculture, P.M.B 2240, Abeokuta, Nigeria
2Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 1-34151, Trieste, Italy
3Institute of Environmental Geology and Geoengineering, Area della Ricerca di Roma 1-Montelibretti, Salaria Km 29, 300, Rome, Italy
4Department of Geosciences, University of Trieste, Weiss 2, 34127 Trieste, Italy
5Department of Environmental Management and Toxicology, University of Agriculture, P.M.B 2240, Abeokuta, Nigeria
Abstract :

Application of stable isotopes in soil studies has improved quantitative evaluation of evaporation and other hydrological processes in soil. This study was carried out to determine the effect of tillage on evaporative loss of water from the soil. Zero tillage and conventional tillage were compared. Suction tubes were installed for soil water collection at the depths 0.15, 0.50, and 1.0 m by pumping soil water with a peristaltic pump. Soil water evaporation was estimated using stable isotopes of water. The mean isotopic composition of the soil water at 0.15 m soil depth were -1.15‰ (δ18O) and -0.75‰ (δD) and were highly enriched compared with the isotopic compositions of the site precipitation. Soil water stable isotopes (δ18O and δD) were more enriched near the surface under zero tillage while they were less negative down the profile under zero tillage. This suggests an occurrence of more evaporation and infiltration under conventional then zero tillage, respectively, because evaporative fractionation contributes to escape of lighter isotopes from liquid into the vapour phase leading to enrichment in heavy isotopes in the liquid phase. The annualevaporation estimated using the vapour diffusion equation ranges from 46-70 and 54-84 mm year-1 under zero and conventional tillage, respectively, indicating more evaporation under conventional tillage compared with zero tillage. Therefore, to reduce soil water loss, adoption of conservation tillage practices such as zero tillage is encouraged.

Language : English