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Abstract
Spoilage of heat processed food and beverage by heat resistant fungi (HRF) is a major prob-

lem for food industry in many countries.Neosartorya fischeri is the leading source of spoilage

in thermally processed products. Its resistance to heat processing and toxigenicity makes

studies aboutNeosartorya fischerimetabolism and chemical sensitivity essential. In this study

chemical sensitivity of two environmentalNeosartorya fischeri isolates were compared. One

was isolated from canned apples in 1923 (DSM3700), the other from thermal processed straw-

berry product in 2012 (KC179765), used as long-stored and fresh isolate, respectively. The

study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity

panel and traditional hole-plate method. The study allowed for obtaining data aboutNeosar-
torya fischeri growth inhibitors. The fresh isolate appeared to be muchmore resistant to chemi-

cal agents than the long-stored isolate. Based on phenotype microarray assay nitrogen

compounds, toxic cations and membrane function compounds were the most effective in

growth inhibition ofN. fischeri isolates. According to the study zaragozic acid A, thallium(I) ace-

tate and sodium selenate were potent and promisingN. fischeri oriented fungicides which was

confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods.

Introduction
Neosartorya fischeri is a heat resistant fungus (HRF) and is the leading cause of spoilage in ther-
mally processed food and beverage, especially fruit products in many countries [1]. First identi-
fication of Neosartorya fischeri from canned strawberries took place in 1963 [2]. Certain strains
of N. fischeri have been reported as able to produce mycotoxins, such as verruculogen, trypto-
quivaline and fumitremorgins A, B and C [3]. N. fischeri is able to survive at least 75°C for
more than 30 minutes, that is the way these fungi are included to heat resistant organisms
[1,4–8]. Ascospores of N. fischerimay spoil heat processed products by their germination and
growth, even under microaerobic conditions [7]. The toxigenicity of these moulds constitutes
hazard to public health [3,4,9]. Contamination of agricultural raw materials is often a result of
their contact with the soil.
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Finding a way to decrease the risk of HRF food spoilage should be a major concern. One of
possible ways to prevent food from HRF contamination and, in consequence, spoilage is find-
ing substances that can effectively stop the growth of these fungi.

Morphological and occurrence analysis ofN. fischeri has provided useful information about
this pathogen, however studies concerning chemical resistance and sensitivity of N. fischeri are a
novelty. There are also no studies concerning the comparison of chemical sensitivity profiles
between long-stored and fresh-isolated strains. This study is the first attempt to determine the
chemical sensitivity of N. fischeri against antibiotics, chemicals and osmolytes using Phenotype
Microarray. With the development of phenotype microarrays (PM), the high-throughput deter-
mination of fungal chemical phenotype is now possible [4,10]. Biolog PM is a complex platform
to facilitate the meta-analysis of phenomics data of microbial organisms [11]. The complete PM
panel for fungal cells contains fifteen pre-formulated 96-well plates (PM1 to PM10 and PM21 to
PM25) pre-coated with chemical compounds or combinations thereof. PM plates may be used in
studies on utilization of various sources of carbon (PM1-2), nitrogen (PM3, PM6-PM8) and
phosphorus or sulphur (PM4). They can also be used to determine the sensitivity to stresses,
such as ions or osmolytes stress (PM9), pH (PM10), and chemical agents (PMs 21–25). PM plat-
form is able to monitor cellular metabolism with the use of colorimetric reporter system. Meta-
bolic measurement is based on direct reading of tetrazolium-based dyes reduction to formazan in
each well [12,13]. However, the traditional hole-plate methods should be used as reference assay,
useful in verifying the results and strengthen the impact of chemicals on fungi.

The aim of this study was the comparison of the chemical sensitivity of two N. fischeri iso-
lates, using Biolog PM chemical sensitivity panel (PMs 21–25). The results of PM assay were
verified with traditional hole-plate zone of inhibition agar diffusion method. In this study we
used a long-stored N. fischeri (DSM3700) from international collection and fresh, newly iso-
lated N. fischeri (KC179765). It is known that fungi may lose their ability to break down differ-
ent substrates due to key gene loss. It is tempting to suggest that fungi may also have tendency
to lose or gain resistance to different chemicals during storage due to changes in genetic or met-
abolic pattern. We assume that study of fresh isolates that may be actually found in heat-treated
products ensures that real threat is studied. The significant impact of heat resistant fungi on
food industry makes studies on their chemical sensitivity extremely urgent.

Materials and Methods

2.1. Fungal isolates
N. fischeri DSM3700 was obtained from the Leibniz Institute DSMZ-German Collection of
Microorganisms and Cell Cultures (DSM3700). DSM3700 is an isolate originally isolated from
canned apples by C. Wehmer in 1923, deposited and identified as N. fischeri by K.B. Raper
1965 [14]. In presented study we use N. fischeri DSM3700 as long-stored isolate. N. fischeri
KC179765 was isolated from heat processed strawberry product in 2012 and we use it as fresh
isolate. The isolate was identified at species level as N. fischeri based on the amplification and
sequencing of the D2 region of the nuclear large-subunit (LSU) ribosomal RNA gene, using
MicroSeq™D2 rDNA Fungal Identification System (ABI). The sequence was deposited in Gen-
Bank of National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov)
under the KC179765 accession number [15].

2.2. Experimental procedures
The chemical sensitivity profile of studied N. fischeri isolates was measured using Biolog Phe-
notype MicroArrays chemical sensitivity panel PM21-PM25. Chemical sensitivity panel con-
tains five PM (PMs 21–25) plates each of 96 wells. Each plate contains 24 different chemical
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agents (for a complete content description of each well in PM21-25 plates, see S1 Table) in 4
different concentrations each. The inhibitory chemicals in PM plates are provided in a titrated
series of 4 wells, arranged with increasing concentrations going from left to right. To evaluate
the resistance of isolates not only to individual compounds but also to their group we divided
studied chemicals from whole panel (PMs 21–25) in 8 groups based on their structure and
function: anions, cations, cyclic compounds, organic compounds, membrane function com-
pounds, chelators, antibiotics and nitrogen compounds (S2 Table).

Cell suspensions were prepared from N. fischeri DSM3700 and N. fischeri KC179765 colo-
nies cultured on malt extract agar plates for several days at 26°C, until good growth and asco-
spores were obtained. Then ascospores were removed from the surface of agar plates using a
sterile swab by gently rubbing across the surface and transferred into sterile inoculating fluid
(FF-IF, BiologTM). Turbidity of suspension was measured and ascospores were added to obtain
uniform suspension until it reached density of 62% transmittance, according to the manufac-
turer protocol. 300μl of ascospores suspension was transferred to 143.7 ml PM inoculation
fluid containing FF-IF fluid, 0.67 grams of yeast nitrogen base and 12.81 grams of D-glucose.
Then 100 μl of fungal inoculum was transferred into each well of particular PM plates. Inocu-
lated PM plates were incubated in OmniLog incubator (BiologTM) at 26°C for 96 hours. Data
were automatically collected every 15 minutes.

To verify the results of chemical sensitivity performed by Biolog Phenotype MicroArrays a
hole-plate zone of inhibition analysis was conducted. The following substances presented
inhibitory effect on both tested N. fischeri isolates: zaragozic acid A, thallium(I) acetate,
3-amino-1,2,4-triazole, hydroxyurea, thiourea, copper(II) sulfate, sodium fluoride and sodium
selenate were tested using hole-plate method. The N. fischeri DSM3700 and N. fischeri
KC179765 isolates were inoculated on 90 mm Petri dishes with potato dextrose agar (PDA)
medium. Then, 8 mm diameter holes were cut in the middle of each PDA medium in each
plate. After that, 100μl of studied substances in 4 concentrations each: 1 mg/ml, 0.1 mg/ml,
0.01 mg/ml and 0.001mg/ml were added to each hole. The study were conducted in three repli-
cations. The results were collected after 24, 48 and 72 hours as a diameter of growth inhibition
zone.

2.3. Statistical analysis
The data were processed using PM kinetic and parametric analysis v1.3 software and OPM
library, and visualized with OPM level plot function [16,17]. The experiments were carried out
in two biological replications for each isolate. Dataset included 9600 readings for both isolates.
The well color development was measured 5 times every 15 minutes after 72 hours of incuba-
tion. The average values of color development from all readings for each chemicals were used
for data analysis. We established thresholds for positive response of fungal growth at 60 Omni-
log units. Analysis of variance (ANOVA) was used to determine the differences in inhibiting
effect of individual chemical agents and their groups on the fungal isolates. Post-hoc analyses
were performed using a Tukey test (HSD) analysis. All data were presented as 95% confidence
intervals. Statistical significance was established at P< 0.05. Statistical analysis were performed
using Statistica software (version 10.0).

Results
The Biolog PM chemical sensitivity panels for fungi (PMs 21–25) contain 120 assays of chemi-
cal sensitivity. Each chemical sensitivity assays was used at four increasing doses of the tested
chemical. The results of performing kinetic analysis are presented at Figs 1, 2, 3, 4 and 5. The
chemical sensitivity profile analysis showed diversity between compared isolates. However, the
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results indicated that in general the growth inhibition of tested isolates increased with the
increasing doses of chemical agents. The results indicated that both isolates overcame influence
of chemical agents during first 24-incubation hours. The most surprising finding in our results
was that fresh isolate of N. fischeri KC179765 had completely different and expanded chemical
sensitivity profile when compared to long-stored isolate (N. fischeri DSM3700). As our results
indicate, this isolate has a higher capacity to overcome almost all of the tested chemical agents.
This was found to be particularly pronounced in the case of lower doses of chemicals. When an
isolate achieves such increased capacity to utilize a wide spectrum of chemical agents, it is
more likely to colonize plants, fruit or agricultural crops and this might explain why this isolate
can be resistant to fungicides. Although the phenomenon of antifungal resistance is still of
major concern in agriculture, according to Vandeputte et al. [18] antifungal agents resistance
appears to be result of point mutations in either chemical compounds targets or transcription
factors regulating the mechanisms of resistance. This could explain the lower chemical resis-
tance of long-stored isolate of N. fischeri (DSM3700) in comparison of fresh-isolated one
(KC179765). Fresh isolate was exposed to a wide range of chemicals, fungicides and competi-
tion with other microorganisms in the environment. The lack of exposure to such factors could
have an impact on possible absence of particular chemical resistance mechanisms or on losing
the resistance genes in long-stored isolate. Therefore, this isolate was very sensitive even for the
lowest doses of chemical agents, what is presented at Figs 1, 2, 3, 4 and 5.

The results of growth intensity of tested isolates for particular chemicals groups after 72
incubation hours are presented at Fig 6. We have observed, that N. fischeri KC179765 was
more resistant to each tested group of chemicals. We found that three out of eight studied
chemical groups were the most efficient in growth inhibition for both isolates. These groups
are nitrogen compounds, toxic cations and membrane function compounds. We have observed
that chelators and toxic anions have the lowest inhibitory effect. The inhibitory effect of studied
antibiotics for N. fischeri KC179765 seem to be much lower than for N. fischeri DSM3700,
when compared to other groups. Overall, the antibiotics, chelators and anionic compounds
should be avoided in any interventions designed to control N. fischeri, as these group do not
affect this species. However, the effects of anionic compounds should be analyzed separately
for each substances due to very strong inhibiting influence of sodium selenate, sodium thiosul-
fate and sodium fluoride against both tested isolates (Fig 7A).

3.1. Toxic anions, cations, cyclic and organic compounds
Out of 17 of examined toxic anions, we found that 8 of them stopped the growth at least one or
both of studied isolates (Fig 7A). Sodium selenite, potassium iodide, boric acid, sodium (meta)
periodate and sodium metasilicate had the inhibitory effect only on N. fischeriDSM3700, while
sodium selenate, sodium thiosulfate and sodium fluoride had this effect on both isolates. Apart
of those three compounds, fresh isolate N. fischeri KC179765 was found to be more resistant to
the remaining studied substances, than long-stored isolate N. fischeri DSM3700.

We have analyzed the effect of 14 toxic cations. Results allowed us to find that 12 of them
had the strong inhibitory effect on either studied isolates (Fig 7B). Manganese(II) chloride,
nickel chloride, zinc chloride, cadmium chloride hydrate, chromium(III) chloride hexahydrate,
cobalt(II) chloride hexahydrate, cupric chloride dihydrate, aluminum sulfate and palladium(II)
chloride affected the growth of long-stored isolate N. fischeri DSM3700. Lithium chloride effec-
tively inhibited only the fresh isolate N. fischeri KC179765, while copper(II) sulfate and thal-
lium(I) acetate had stopped both isolates. Apart of the last two mentioned substances, the
inhibitory effect of other cationic substances on N. fischeri DSM3700 and N. fischeri KC179765
was very strong and moderate, respectively.
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Fig 1. Visualization ofN. fischeriDSM3700 andN. fischeriKC179765 growth kinetics on plate PM21. The growth values are represented by a color
range as given in the scale bar on the right of the figure. The growth value increases from the yellow to the blue color. Yellow color represents growth
inhibition.

doi:10.1371/journal.pone.0147605.g001
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Fig 2. Visualization ofN. fischeriDSM3700 andN. fischeriKC179765 growth kinetics on plate PM22. The growth values are represented by a color
range as given in the scale bar on the right of the figure. The growth value increases from the yellow to the blue color. Yellow color represents growth
inhibition.

doi:10.1371/journal.pone.0147605.g002
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Fig 3. Visualization ofN. fischeriDSM3700 andN. fischeriKC179765 growth kinetics on plate PM23. The growth values are represented by a color
range as given in the scale bar on the right of the figure. The growth value increases from the yellow to the blue color. Yellow color represents growth
inhibition.

doi:10.1371/journal.pone.0147605.g003
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Fig 4. Visualization ofN. fischeriDSM3700 andN. fischeriKC179765 growth kinetics on plate PM24. The growth values are represented by a color
range as given in the scale bar on the right of the figure. The growth value increases from the yellow to the blue color. Yellow color represents growth
inhibition.

doi:10.1371/journal.pone.0147605.g004
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Fig 5. Visualization ofN. fischeriDSM3700 andN. fischeriKC179765 growth kinetics on plate PM25. The growth values are represented by a color
range as given in the scale bar on the right of the figure. The growth value increases from the yellow to the blue color. Yellow color represents growth
inhibition.

doi:10.1371/journal.pone.0147605.g005
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Fresh isolate of N. fischeri KC179765 appeared to be resistant to every one of 11 studied
cyclic compounds. On the contrary, long-stored isolate N. fischeri DSM3700 was very vulnera-
ble to appearance of this group of compounds. 7 of them: promethazine, trifluoperazine, ben-
zamidine, cycloheximide, chlortetracycline hydrochloride, methyl viologen dichloride hydrate
and berberine had very strong inhibitory effect (Fig 7C).

The studied organic compounds was the largest group of chemicals agents. It consisted of
32 chemical compounds of very differentiated effect on studied isolates growth. We have found
one substance, zaragozic acid A, that was able to inhibit both studied isolates and 15 substances
that showed strong inhibition on N. fischeri DSM3700 (Fig 7D). These substances were L-argi-
nine hydroxamate, miltefosine, D,L—serine hydroxamate, D- serine, glycine hydrochloride,
sodium caprylate, blasticidin hydrochloride, thioridazine hydrochloride, 6-azuracil, thialysine,
malic acid, tartaric acid, 5-fluorocytosine, chloroquine, cinnamic acid and 5-fluorouracil.

3.2. Membrane function, chelators, antibiotics and nitrogen compounds
The obtained results show very intensive inhibitory effect of membrane function compounds on
long-stored isolateN. fischeriDSM3700 (Fig 8A). Out of 13 studied substances, only 4 were not able
to stop the growth of this isolate. However, none of the studied substances had inhibiting impact on
freshN. fischeri KC179765 growth strong enough to consider it as the stopping of growth.

We observed, that fresh N. fischeri KC179765 was generally more resistant to chelators than
long-stored N. fischeri DSM3700 isolate. The only one substance that had the inhibitory effect
on either of isolates was 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA),
which had stopped the growth of N. fischeri DSM3700 (Fig 8B).

We studied the impact of 13 antibiotics on growth of two N. fischeri isolates. We have found
that fresh isolate N. fischeri KC179765 has developed strong resistance to all of studied antibi-
otics compounds (Fig 8C). Long-stored isolate N. fischeriDSM3700 was strongly inhibited by 5
antibiotics: ceftriaxone, dequalinium chloride, apramycin sulfate, amphotericin B and hygro-
mycin B.

The group of nitrogen compounds appeared to be the most inhibiting to both isolates. Out
of 14 studied compounds, 3 successfully stopped the growth of both isolates. These compounds

Fig 6. Visualization of N. fischeriDSM3700 andN. fischeriKC179765 growth in occurrence of each
studied groups of chemical compounds. The scale represents growth values (Omnilog units) after 72h of
incubation. The horizontal line at value of 60 represents the growth threshold considered as positive.

doi:10.1371/journal.pone.0147605.g006
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were thiourea, 3-amino-1,2,4-triazole and hydroxyurea. We found N. fischeri DSM3700 to be
more resistant than N. fischeri KC179765 to fluorodeoxyuridine, however growth of both iso-
lates in these wells was considered to be positive (Fig 8D).

3.3. Area of growth inhibition
Out of 8 studied substances, we found that only three of them presented inhibitory effect on
tested isolates (Fig 9). Zaragozic acid A in concentration of 1mg/ml caused inhibition of both iso-
lates growth expressed as 36.67 and 43.34 mm inhibition zones forN. fischeriDSM3700 and
N. fischeri KC179765, respectively. The inhibition was present also in concentration of 0.1mg/ml
which was expressed as 23.67 and 29.67 mm of growth inhibition zones for N. fischeriDSM3700
andN. fischeri KC179765, respectively. Lower concentrations of the compound had no inhibitory
effect on both tested isolates. Thallium(I) acetate in concentration of 1mg/ml resulted in 32.00
and 53.34 mm of fungal growth inhibition zones, while lower concentrations had no effect on
growth of bothN. fischeri isolates. Sodium selenate in concentration of 1mg/ml caused 31.67 and
53.67 mm of growth inhibition zones for both tested isolates. The other studied substances:

Fig 7. Visualization ofN. fischeriDSM3700 andN. fischeriKC179765 growth in occurrence of toxic anions, cations, cyclic and organic
compounds. The scale represents growth values (Omnilog units) after 72h of incubation. The horizontal line at value of 60 represents the growth threshold
considered as positive.

doi:10.1371/journal.pone.0147605.g007
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3-amino-1,2,4-triazole, hydroxyurea, thiourea, copper(II) sulfate and sodium fluoride had no
inhibitory effect on N. fischeri in any of tested concentrations.

Discussion
Thermal death rates of N. fischeri ascospores under the influence of organic acids and preserva-
tives were described in literature. It is known that citric and tartaric acids exhibit the destruc-
tion of ascospores in fruit juices. The preservatives like potassium sorbate and sodium
benzoate are also used to the control of this fungus in fruit juices [19,20]. Delgado et al. [21]
reported that hydrogen peroxide must be considered to reduce the probability of packages con-
tamination by N. fischeri. There are no papers concerning antibiotics and fungicides influence
on growth reduction of this fungus, but there are a lot of information that N. fischeri can be
used as producer of antibiotics [22,23] and antifungal proteins [24–26]. In recent years the
occurrence of fungal infections has been increasing everywhere, which may be explained by
changing climatic conditions and resistance of fungi to fungicides due to their extensive use in
agriculture [27,28]. Bromley et al. [28] reported that agricultural use of the most dominant

Fig 8. Visualization ofN. fischeriDSM3700 andN. fischeriKC179765 growth in occurrence of membrane function, chelators, antibiotics and
nitrogen compounds. The scale represents growth values (Omnilog units) after 72h of incubation. The horizontal line at value of 60 represents the growth
threshold considered as positive.

doi:10.1371/journal.pone.0147605.g008
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class of antifungal agents–azoles, may lead to resistance in environmental fungi of clinical
importance. They isolated also azole-resistant of N. fischeri species. In these cases it is reason-
able to carry out study that can lead to the control of N. fischeri by finding substances that can
be used as active compounds of chemical agents, including fungicides.

The presented results suggest that chemical sensitivity phenomics of newly isolated fresh N.
fischeri isolate differs significantly from long-stored isolate. 62 out of 120 studied substances
effectively inhibited growth of long-stored isolate N. fischeri DSM3700 whereas they did not
have influence on growth of fresh environmental Neosartorya fischeri isolate (KC179765).

According to studies with Biolog PM Platform (Figs 7 and 8) the substances able to prevent
both studied isolates from growth (N. fischeri KC179765 and N. fischeriDSM3700) were sodium
selenate, sodium thiosulfate, sodium fluoride, copper(II) sulphate, thallium(I) acetate, zaragozic
acid A, thiourea, 3-amino-1,2,4- triazole and hydroxyurea. However, results of further verifying
studies involving hole-plate zone of inhibition method on PDAmedium showed that only zara-
gozic acid A in concentrations of 1 mg/ml and 0.1 mg/ml and thallium(I) acetate and sodium sel-
enate in concentration of 1.mg/ml had inhibitory effect on tested isolates growth.

Zaragozic acid A, sodium fluoride, 3-amino-1,2,4- triazole, copper(II) sulphate, and thio-
urea are known for their biocide properties [29–37], although their impact on N. fischeri has
not been studied yet. According to our study, zaragozic acid A suppresses N. fischeri growth.

The inhibitory effect of zaragozic acid A on N. fischerimay be related to its strong inhibitory
effect on the squalene synthase which also affects the sterol synthesis in organisms [29,38]. Ste-
rols are important membrane components and precursors for the synthesis of powerful bioac-
tive molecules. Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production
of ergosterol in fungi and is required for heat resistance [39]. Therefore, fungicides containing
zaragozic acid A could be tested as specific and dedicated for heat resistant fungi elimination.
We hypothesize that the fungicides with chemical agent mentioned above as active compound
could be used in antifungal protection against heat resistant N. fischeri species.

Sodium selenate appeared to be good N. fischeri growth inhibitor. Selenium compounds are
considered as safe for human health, however in concentrations over 2.4 milligrams of

Fig 9. Visualization of inhibitory effect of zaragozic acid A, thallium(I) acetate, 3-amino-1,2,4-triazole,
hydroxyurea, thiourea, copper(II) sulfate, sodium fluoride and sodium selenate onN. fischeri
DSM3700 andN. fischeriKC179765 with hole-plate zone of growth inhibition method. The scale
represents inhibition zone diameter (millimeters) after 72h of incubation. The horizontal line at value of 8
represents the hole diameter in the medium and is considered as threshold in growth inhibition.

doi:10.1371/journal.pone.0147605.g009
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selenium per day it is considered as toxic [40,41]. Sodium selenate is the active ingredient often
used in shampoos, and known as an antifungal agent in fungal infection as well as a cytostatic
agent, slowing the growth hyperproliferative cells. There are no studies concerning heat resis-
tant fungal growth inhibition by sodium selenate, but our results indicated its potential as
active compound of fungicides against N. fischeri species. The growth inhibition of N. fischeri
isolates caused by sodium selenate was confirmed by both PM and hole-plate methods.
According to this study sodium selenate is a potent and promising N. fischeri oriented fungi-
cide. Moreover, because selenium compounds like sodium selenate are used as fertilizers for
selenium-poor soils [42] selenium-based fungicide could be safer for the environment than
other toxic compounds.

In this study thallium(I) acetate showed promising inhibitory effects on N. fischeri. There is
no studies concerning its use as a fungicide, however its toxic and genotoxic effect on human health
[43,44] makes this substance very hazardous to use as a possible fungicide in food croplands.

Hydroxyurea, classified as ribonucleotide reductase M2, has not been yet reported in use as
a fungicide. This study reports antifungal activity of hydroxyurea against N. fischeri. The inhib-
itory effect of hydroxyurea may be related to its ability to deter DNA synthesis [45]. Hydroxy-
urea is mutagenic in vitro to bacteria, fungi, protozoa, and mammalian cells [46]. Although
because of possible negative impact on human health [47], hydroxyurea is used as an antineo-
plastic drug for treatment of HIV, cancer, and myeloproliferative diseases [48]. However, more
studies concerning its antifungal activity and safety should be performed.

3-amino-1,2,4- triazole (3-AT), commonly known as amitrole, is a substance that usage is
regulated by European Commission and can be used only as a herbicide [49]. Several deriva-
tives of 1,2,4-triazoles have been reported to exhibit antifungal activity [50]. The inhibitory
effect and impact on N. fischeri growth may be connected with 3-ATs reported effect on histi-
dine biosynthesis, through competitive inhibition of imidazoleglycerol-phosphate dehydratase
[51,52]. Moreover, it is reported to block the biosynthesis of riboflavin in plants [53]. 3-AT is
also a potent catalase inhibitor [54].

Thiourea has been reported for its genotoxic properties on yeast [55,56]. However the stud-
ies concerning its effect on human health collected in World Health Organization [57], show
that there is no proof of negative effect of thiourea on human health. In addition, some thio-
urea derivatives are known to be associated with a wide range of biological activities such as
analgesic, antitumor, antioxidant, anticonvulsant, and anti-HIV properties [58–66]. However,
antibacterial and antifungal activities of thiourea derivatives have been less widely documented
[67–69]. Our results based on PMmicroplates suggested that thiourea could be used as poten-
tial antifungal agent in heat resistant N. fischeri species elimination, however this effect has not
been confirmed by hole-plate method.

Copper(II) sulphate is well known [36] and allowed to use by European Commission as fun-
gicide [49]. Its inhibitory effect on N. fischerimay be based on toxic properties of Cu2+ ions
[70]. It was reported that fungi may adapt to the occurrence of copper in environment [71].

The fungicide effect of sodium fluoride is known [72]. However, some fungi had developed
mechanism allowing them to survive in high fluoride concentrations. This mechanism involves
the expression of FEX gene and synthesis of FEX protein [73]. In order to use fluoride com-
pounds as fungicide, genetic studies directed on occurrence of FEX gene in fungi should be per-
formed. Latest study reported that inhibitory effect of sodium fluoride was found against
fungus Fusarium oxysporum [74]. The results from our PMs study demonstrated that this sub-
stance could also have antifungal activity to the heat resistant N. fischeri fungi, however this
effect has not been confirmed using hole-plate method. Therefore based on this results we sup-
pose that the influence of sodium fluoride on heat resistant fungi growth is depended on the
availability of nutrients in the environment. In rich-nutrients environment there is no growth
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inhibition (PDB medium), while in poor-nutrients environment the inhibitory effect is present
(PM plates medium).

The provided experimentations are complex evaluation and screening of the in vitro effect of
different chemicals on growth of Neosartorya fischeri. Results of performing PM assay onN.
fischeri provide important information on phenomics of this important heat resistant fungus. The
hole-plate zone of inhibition analysis allows to verify data obtained with PMs assay and to deter-
mine the effective concentrations of chemical agents. The presented study based on both PMs and
hole-plate methods showed that the use of sodium selenate, thallium(I) acetate and zaragozic acid
A could be considered as a potential fungicides against heat resistant N. fischeri. For the control of
the heat resistant fungi, these compounds could potentially be used alone or in combination with
other safe treatments. However, these compounds are not considered as GRAS (Generally Recog-
nized As Safe) by the FDA (American Food and Drug Administration). Therefore, there is a need
to evaluate the effect of these compounds on seeds and plants. These results provided information
of the most promising antifungal agents againstN. fischeri. Received data can be used for detailed
comparison of other isolates and species of heat resistant fungi in further studies.

This study also presents results on comparison of Biolog PMs chemical sensitivity assay
with traditional hole-plate zone inhibition method. Results did not perfectly match those
achieved with Biolog assay. Confirmation of PMs Biolog results by traditional hole-plate
method were observed with regard to three above mentioned potential fungicides compounds.
We hypothesize that it could be caused by usage of media poorer in nutrients in Biolog assay,
or by differences in chemical agents concentration, as exact concentrations in Biolog assay are
unpublished, therefore unknown. We suppose that fungi grown in optimal nutrient conditions
tend to be more chemical resistant. The Biolog PMs microplate was effective and time saving
alternative method for determining N. fischeri resistance/sensitivity to chemicals. Because
quantitative assays were less labor intensive and faster in PMs microplates than in traditional
method this approach can be very useful in screening study of chemical sensitivity of heat resis-
tant fungi. Then the most promising chemical agents influence on fungal growth should be
confirmed by conventional hole-plate methods.

In summary, our results present the most comprehensive analysis of chemical sensitivities
of heat-resistant N. fischeri isolates. These findings could be used for designing better preven-
tion and intervention methods against N. fischeri and also for formulating new active com-
pounds of specific fungicides dedicated to the control of this species.
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